Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polytype switching by super-lubricant van der Waals cavity arrays

Abstract

Expanding the performance of field-effect devices is a key challenge of the ever-growing chip industry at the core of current technologies1. Non-volatile multiferroic transistors that control atomic movements rather than purely electronic distribution are highly desired2. Recently, a field-effect control over structural transitions was achieved in commensurate stacking configurations of honeycomb van der Waals (vdW) polytypes by sliding boundary strips between oppositely polarized domains3,4,5,6. This ferroelectric hysteretic response, however, relied on pre-existing dislocation strips between relatively large micron-scale domains, severely limiting practical implementations3,7,8. Here we report the robust electric switching of single-domain polytypes in nanometre-scale islands embedded in super-lubricant vdW arrays. We etch cavities into a thin layered spacer and then encapsulate it with functional flakes. The flakes above/under the lattice-mismatched spacer sag and touch at each cavity to form islands of commensurate and metastable polytype configurations. By imaging the polarization of the polytypes, we observe nucleation and annihilation of boundary strips and geometry-adaptable ferroelectric hysteresis loops. Using mechanical stress, we further control the position of boundary strips, modify marginal twist angles and nucleate patterns of polar domain. This super-lubricant arrays of polytype (SLAP) concept suggests ‘slidetronics’ device applications such as elastic-coupled neuromorphic memory cells and non-volatile multiferroic tunnelling transistors and programmable response by designing the size, shape and symmetry of the islands and of the arrays9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Super-lubricant array of vdW polytypes (SLAP).
Fig. 2: Electric-field-induced dislocation nucleation and annihilation.
Fig. 3: Mechanical nucleation and reconfiguration of confined domain patterns.

Similar content being viewed by others

Data availability

All of the data in the experiments and analysis that support the findings of this study are included in the main paper and Methods. Any other relevant data are available at https://doi.org/10.5281/zenodo.14082606 (ref. 48).

References

  1. International Roadmap for Devices and Systems. IEEE https://doi.org/10.60627/0p45-zj55 (2023).

  2. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    CAS  PubMed  MATH  ADS  Google Scholar 

  3. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    CAS  MATH  ADS  Google Scholar 

  4. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    CAS  MATH  ADS  Google Scholar 

  5. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    CAS  PubMed  PubMed Central  MATH  ADS  Google Scholar 

  6. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    CAS  PubMed  MATH  ADS  Google Scholar 

  7. Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    CAS  PubMed  MATH  ADS  Google Scholar 

  8. Gao, Y. et al. Tunnel junctions based on interfacial two dimensional ferroelectrics. Nat. Commun. 15, 4449 (2024).

    CAS  PubMed  PubMed Central  MATH  ADS  Google Scholar 

  9. Vizner Stern, M., Salleh Atri, S. & Ben Shalom, M. Sliding van der Waals polytypes. Nat. Rev. Phys. https://doi.org/10.1038/s42254-024-00781-6 (2024).

  10. Yamada, N. et al. High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 26, 61–66 (1987).

    Google Scholar 

  11. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    CAS  PubMed  MATH  ADS  Google Scholar 

  12. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    CAS  PubMed  MATH  Google Scholar 

  13. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    CAS  PubMed  MATH  ADS  Google Scholar 

  14. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    CAS  PubMed  PubMed Central  MATH  Google Scholar 

  15. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    CAS  PubMed  PubMed Central  MATH  ADS  Google Scholar 

  16. Lebedeva, I. V., Lebedev, A. V., Popov, A. M. & Knizhnik, A. A. Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride. Phys. Rev. B 93, 235414 (2016).

    ADS  Google Scholar 

  17. Kushima, A., Qian, X., Zhao, P., Zhang, S. & Li, J. Ripplocations in van der Waals layers. Nano Lett. 15, 1302–1308 (2015).

    CAS  PubMed  ADS  Google Scholar 

  18. Popov, A. M., Lebedeva, I. V., Knizhnik, A. A., Lozovik, Y. E. & Potapkin, B. V. Commensurate-incommensurate phase transition in bilayer graphene. Phys. Rev. B 84, 045404 (2011).

    ADS  Google Scholar 

  19. Tang, P. & Bauer, G. E. W. Sliding phase transition in ferroelectric van der Waals bilayers. Phys. Rev. Lett. 130, 176801 (2023).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  20. Yasuda, K. et al. Ultrafast high-endurance memory based on sliding ferroelectrics. Science 385, 53–56 (2024).

    CAS  PubMed  MATH  Google Scholar 

  21. Bian, R. et al. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385, 57–62 (2024).

    CAS  PubMed  MATH  Google Scholar 

  22. Li, H. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020).

    CAS  PubMed  MATH  ADS  Google Scholar 

  23. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    CAS  PubMed  MATH  ADS  Google Scholar 

  24. Atri, S. S. et al. Spontaneous electric polarization in graphene polytypes. Adv. Phys. Res. 3, 2300095 (2024).

    MATH  Google Scholar 

  25. Cao, W. et al. Polarization saturation in multilayered interfacial ferroelectrics. Adv. Mater. 36, 2400750 (2024).

    CAS  Google Scholar 

  26. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    CAS  PubMed  ADS  Google Scholar 

  27. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    CAS  PubMed  MATH  ADS  Google Scholar 

  28. Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    CAS  PubMed  MATH  ADS  Google Scholar 

  29. Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    CAS  PubMed  MATH  ADS  Google Scholar 

  30. Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990).

    CAS  MATH  ADS  Google Scholar 

  31. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    PubMed  MATH  ADS  Google Scholar 

  32. Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013).

    CAS  PubMed  Google Scholar 

  33. Constantinescu, G., Kuc, A. & Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013).

    PubMed  ADS  Google Scholar 

  34. Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    CAS  PubMed  MATH  ADS  Google Scholar 

  35. Gruverman, A. et al. Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors. Appl. Phys. Lett. 83, 728–730 (2003).

    CAS  MATH  ADS  Google Scholar 

  36. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 335, 59–61 (2012).

    MATH  ADS  Google Scholar 

  37. Tsuji, T., Irihama, H. & Yamanaka, K. Observation of anomalous dislocation behavior in graphite using ultrasonic atomic force microscopy. Jpn. J. Appl. Phys. 41, 832–835 (2002).

    CAS  MATH  ADS  Google Scholar 

  38. Jiang, L. et al. Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–208 (2018).

    CAS  PubMed  MATH  ADS  Google Scholar 

  39. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    CAS  MATH  ADS  Google Scholar 

  40. Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, eabd3655 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Gilbert, S. M. et al. Alternative stacking sequences in hexagonal boron nitride. 2D Mater. 6, 021006 (2019).

    CAS  Google Scholar 

  42. Wu, H. et al. Direct visualization and manipulation of stacking orders in few-layer graphene by dynamic atomic force microscopy. J. Phys. Chem. Lett. 12, 7328–7334 (2021).

    CAS  PubMed  MATH  Google Scholar 

  43. Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023).

    CAS  PubMed  MATH  ADS  Google Scholar 

  44. Tang, H. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature 632, 1038–1044 (2024).

    CAS  PubMed  MATH  Google Scholar 

  45. Nery, J. P., Calandra, M. & Mauri, F. Long-range rhombohedral-stacked graphene through shear. Nano Lett. 20, 5017–5023 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Bosse, J. L., Lee, S., Andersen, A. S., Sutherland, D. S. & Huey, B. D. High speed friction microscopy and nanoscale friction coefficient mapping. Meas. Sci. Technol. 25, 115401 (2014).

    ADS  Google Scholar 

  47. Zhang, X., Yu, K., Lang, H., Huang, Y. & Peng, Y. Friction reduction of suspended multilayer h-BN based on electrostrain. Appl. Surf. Sci. 611, 155312 (2023).

    CAS  Google Scholar 

  48. Yeo, Y. Polytype switching by super lubricant van der Waals cavity arrays. Zenodo https://doi.org/10.5281/zenodo.14082606 (2024).

Download references

Acknowledgements

We thank N. Ravid and I. Malker for laboratory support. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan. M.B.S. acknowledges support from the European Research Council under the European Union’s Horizon 2024 research and innovation programme (‘SlideTronics’, consolidator grant agreement no. 101126257) and the Israel Science Foundation under grant nos 319/22 and 3623/21. We further acknowledge the Center for Nanoscience and Nanotechnology of Tel Aviv University.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. performed the experiments, supported by Y.S., N.Ro. and N.Ra. and supervised by M.B.S. K.W. and T.T. provided the h-BN crystals. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Moshe Ben Shalom.

Ethics declarations

Competing interests

Ramot at Tel Aviv University Ltd has applied for a patent (US application no. 63/676,819) on some of the technology and materials discussed here, for which Y.Y., Y.S., N.Ra. and M.B.S. are listed as co-inventors.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Optical device images.

ac, Optical microscope image of devices 1–3 presented in Figs. 13, respectively. Scale bars, 25 μm.

Extended Data Fig. 2 Comparison of spacer lithography methods.

a,b, AFM and optical microscope image of local anodic oxidation lithography with cavity diameter down to about 20 nm. c,d, AFM and optical image of laser pulse lithography.

Extended Data Fig. 3 Imaging ferroelectric hysteresis loop for a 150-nm cavity.

Device 2; see Fig. 2. Domain pattern imaged by KPFM after bias scans at the voltage and time indicated on each map.

Extended Data Fig. 4 Further ferroelectric hysteresis measurements (device 2).

a, Topographic and KPFM maps of the cavity array. bd, Hysteresis loops of the cavities marked in a, with diameters of 150, 250 and 350 nm, respectively. Bright and dark column stands for the switching to complete up-polarization and down-polarization.

Extended Data Fig. 5 Triangular intermediate transition states (device 2).

a, Topographic image of a 250-nm cavity. bd, KPFM image measured before and after applying bias scans as indicated in each map.

Extended Data Fig. 6 Determination of threshold pressure for dislocation movement.

a, Topographic AFM image of the measured array. b, KPFM signals before tip pressing. c, Successive pressing experiments. Scanning illustration and applied force indicate the contact-mode scan parameters before the KPFM image. Scale bar indicates 1 μm.

Extended Data Fig. 7 Imaging sagging of active layers (device 2).

a,b, Topography and surface potential maps of as-fabricated cavity array. c,d, Topographic and KPFM maps after AFM contact-mode scans at a pressure of 300 nN. Scale bars, 1 μm.

Extended Data Fig. 8 Friction force measurement around the cavity.

a, Friction force calibration curve measured in atomically flat h-BN. b, Topographic image of cavity in device 3 measured at 300-nN loading force. c, Corresponding friction force mapping at 300-nN applied normal force.

Extended Data Table 1 Flakes thickness of the three devices presented in the main text

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, Y., Sharaby, Y., Roy, N. et al. Polytype switching by super-lubricant van der Waals cavity arrays. Nature 638, 389–393 (2025). https://doi.org/10.1038/s41586-024-08380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08380-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing