Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sliding van der Waals polytypes

Abstract

Compared with electronic phase transitions, structural phase transitions of crystals are challenging to control owing to the energy cost of breaking dense solid bonds. Recently, electric field switching of stacking configuration between honeycomb layers, held together by relatively weak van der Waals attractions, has been demonstrated. Different structural configurations — or polytypes — of 2D van der Waals materials host diverse electronic orders such as intrinsic polarizations and magnetism. In this Perspective, we discuss stacking energies, symmetries and orbital overlaps that underlie the band structures and internal charge distributions of these polytypes and their effect on properties such as interfacial ferroelectricity, ladder-like cumulative polarization, superconductivity and orbital magnetic orders. We also identify the challenges of harnessing these switching mechanisms for rapid, local and practical multiferroic devices.

Key points

  • van der Waals polytypes are different stacking arrangements of identical layers that form metastable periodic crystals.

  • For polytypes with a given number of layers N, the atomic position within the unit cell of each polytype results in distinct optical and electromagnetic properties including intrinsic electric polarizations, in the case of broken inversion and mirror symmetries.

  • The relative structural stability of a given polytype configuration depends on the magnitude and orientation of externally applied electric fields.

  • In response to the external electric field, boundary strips between different structural domains may slide in a superlubricant manner to expand the area of the more stable polytype.

  • The relative structural stability, transition temperature and switching dynamics are determined by the energy cost, pinning potential barriers and the mutual interaction of the partial dislocation strips.

  • Electric field control of the local polytype order opens opportunities for rapid, efficient, durable and coupled multiferroic switching, which is unavailable in 3D crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stacking potentials.
Fig. 2: Sorting polytypes and symmetries.
Fig. 3: Stacking-dependent properties of polytypes.
Fig. 4: Adjacent polytypes by artificial stacking.
Fig. 5: Poly-switching dynamics by sliding partial dislocation strips.

Similar content being viewed by others

References

  1. Bardeen, J. & Brattain, W. H. The transistor, a semi-conductor triode. Phys. Rev. 74, 230–231 (1948).

    Article  ADS  Google Scholar 

  2. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018). Observation of a stacking-induced ferroelectric response from transport measurements.

    Article  ADS  Google Scholar 

  3. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021). Direct observation of electric field-induced dislocation lines sliding in interfacial ferroelectrics.

    Article  ADS  Google Scholar 

  4. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  ADS  Google Scholar 

  5. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  ADS  Google Scholar 

  6. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  ADS  Google Scholar 

  7. Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals materials: related physics and future opportunities. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).

    Article  Google Scholar 

  8. Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).

    Article  ADS  Google Scholar 

  9. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017). Prediction of stacking-induced spontaneous polarization.

    Article  Google Scholar 

  10. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  Google Scholar 

  11. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022). Observation of a linear accumulation of polarization with the thickness in interfacial ferroelectrics.

    Article  ADS  Google Scholar 

  12. Meng, P. et al. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022).

    Article  ADS  Google Scholar 

  13. Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat. Nanotechnol. 17, 143–147 (2022).

    Article  ADS  Google Scholar 

  14. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  ADS  Google Scholar 

  15. Liu, X., Pyatakov, A. P. & Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020).

    Article  ADS  Google Scholar 

  16. Jang, M. et al. Direct observation of twisted stacking domains in the van der Waals magnet CrI3. Nat. Commun. 15, 5925 (2024).

    Article  Google Scholar 

  17. Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article  ADS  Google Scholar 

  18. Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article  ADS  Google Scholar 

  19. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article  ADS  Google Scholar 

  20. Ghazaryan, A., Holder, T., Serbyn, M. & Berg, E. Unconventional superconductivity in systems with annular Fermi surfaces: application to rhombohedral trilayer graphene. Phys. Rev. Lett. 127, 247001 (2021).

    Article  ADS  Google Scholar 

  21. Ghazaryan, A., Holder, T., Berg, E. & Serbyn, M. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Phys. Rev. B 107, 104502 (2023).

    Article  ADS  Google Scholar 

  22. Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article  ADS  Google Scholar 

  23. Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorfjun, R. H. Man-made diamonds. Nature 176, 51–55 (1955).

    Article  ADS  Google Scholar 

  24. Fahy, S., Louie, S. G. & Cohen, M. L. Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys. Rev. B 34, 1191–1199 (1986).

    Article  ADS  Google Scholar 

  25. Xie, H., Yin, F., Yu, T., Wang, J.-T. & Liang, C. Mechanism for direct graphite-to-diamond phase transition. Sci. Rep. 4, 5930 (2014).

    Article  Google Scholar 

  26. Evans, T. & James, P. F. A study of the transformation of diamond to graphite. Proc. R. Soc. Lond. A Math. Phys. Sci. 277, 260–269 (1964).

    ADS  Google Scholar 

  27. Berman, R. & Thewlis, J. The graphite–diamond equilibrium. Nature 176, 834–836 (1955).

    Article  ADS  Google Scholar 

  28. Popov, I. V., Görne, A. L., Tchougréeff, A. L. & Dronskowski, R. Relative stability of diamond and graphite as seen through bonds and hybridizations. Phys. Chem. Chem. Phys. 21, 10961–10969 (2019).

    Article  Google Scholar 

  29. Guinier, A. et al. Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the nomenclature of disordered, modulated and polytype structures. Acta Crystallogr. A 40, 399–404 (1984).

    Article  ADS  Google Scholar 

  30. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  ADS  Google Scholar 

  31. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  ADS  Google Scholar 

  32. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  ADS  Google Scholar 

  33. Atri, S. S. et al. Spontaneous electric polarization in graphene polytypes. Adv. Phys. Res. 3 (2024). Observation of spontaneous polarization in graphitic crystals.

  34. Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    Article  ADS  Google Scholar 

  35. Van Winkle, M. et al. Engineering interfacial polarization switching in van der Waals multilayers. Nat. Nanotechnol. 19, 751–757 (2024).

    Article  Google Scholar 

  36. Gao, Y. et al. Tunnel junctions based on interfacial two dimensional ferroelectrics. Nat. Commun. 15, 4449 (2024).

    Article  ADS  Google Scholar 

  37. Yeo, Y. et al. Switchable crystalline islands in super lubricant arrays. Preprint at https://arxiv.org/abs/2409.07225 (2024). Observation of full switching and the creation of dislocation lines without any pre-existing ones.

  38. Bernal, J. D. The structure of graphite. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 106, 749–773 (1924).

    ADS  Google Scholar 

  39. Charlier, J.-C., Gonze, X. & Michenaud, J.-P. First-principles study of the stacking effect on the electronic properties of graphite(s). Carbon 32, 289–299 (1994).

    Article  Google Scholar 

  40. Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007).

    Article  ADS  Google Scholar 

  41. Tománek, D. et al. Theory and observation of highly asymmetric atomic structure in scanning-tunneling-microscopy images of graphite. Phys. Rev. B 35, 7790–7793 (1987).

    Article  ADS  Google Scholar 

  42. Tománek, D. & Louie, S. G. First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite. Phys. Rev. B 37, 8327–8336 (1988).

    Article  ADS  Google Scholar 

  43. Partoens, B. & Peeters, F. M. From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006).

    Article  ADS  Google Scholar 

  44. Mostaani, E., Drummond, N. D. & Fal’ko, V. I. Quantum Monte Carlo calculation of the binding energy of bilayer graphene. Phys. Rev. Lett. 115, 115501 (2015).

    Article  ADS  Google Scholar 

  45. Popov, A. M., Lebedeva, I. V., Knizhnik, A. A., Lozovik, Y. E. & Potapkin, B. V. Commensurate–incommensurate phase transition in bilayer graphene. Phys. Rev. B 84, 045404 (2011).

    Article  ADS  Google Scholar 

  46. Lebedeva, I. V. et al. Fast diffusion of a graphene flake on a graphene layer. Phys. Rev. B 82, 155460 (2010).

    Article  ADS  Google Scholar 

  47. Hod, O. Quantifying the stacking registry matching in layered materials. Isr. J. Chem. 50, 506–514 (2010).

    Article  Google Scholar 

  48. Schabel, M. C. & Martins, J. L. Energetics of interplanar binding in graphite. Phys. Rev. B 46, 7185–7188 (1992).

    Article  ADS  Google Scholar 

  49. Constantinescu, G., Kuc, A. & Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013).

    Article  ADS  Google Scholar 

  50. Liu, L., Feng, Y. P. & Shen, Z. X. Structural and electronic properties of h-BN. Phys. Rev. B 68, 104102 (2003).

    Article  ADS  Google Scholar 

  51. Gilbert, S. M. et al. Alternative stacking sequences in hexagonal boron nitride. 2D Mater. 6, 021006 (2019).

    Article  Google Scholar 

  52. Hod, O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory Comput. 8, 1360–1369 (2012).

    Article  Google Scholar 

  53. Pease, R. S. An X-ray study of boron nitride. Acta Crystallogr. 5, 356–361 (1952).

    Article  Google Scholar 

  54. Catellani, A., Posternak, M., Baldereschi, A. & Freeman, A. J. Bulk and surface electronic structure of hexagonal boron nitride. Phys. Rev. B 36, 6105–6111 (1987).

    Article  ADS  Google Scholar 

  55. Yamamura, S., Takata, M. & Sakata, M. Charge density of hexagonal boron nitride using synchrotron radiation powder data by maximum entropy method. J. Phys. Chem. Solids 58, 177–183 (1997).

    Article  ADS  Google Scholar 

  56. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  ADS  Google Scholar 

  57. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  Google Scholar 

  58. Vaskivskyi, I. et al. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2. Sci. Adv. 1, e1500168 (2015).

    Article  ADS  Google Scholar 

  59. Ma, L. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 7, 10956 (2016).

    Article  ADS  Google Scholar 

  60. Verhoeven, G. S., Dienwiebel, M. & Frenken, J. W. M. Model calculations of superlubricity of graphite. Phys. Rev. B 70, 165418 (2004).

    Article  ADS  Google Scholar 

  61. Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013).

    Article  Google Scholar 

  62. Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Article  Google Scholar 

  63. Latil, S. & Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006).

    Article  ADS  Google Scholar 

  64. Koshino, M. & McCann, E. Multilayer graphenes with mixed stacking structure: interplay of Bernal and rhombohedral stacking. Phys. Rev. B 87, 045420 (2013).

    Article  ADS  Google Scholar 

  65. Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011).

    Article  ADS  Google Scholar 

  66. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  ADS  Google Scholar 

  67. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    Article  ADS  Google Scholar 

  68. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article  ADS  Google Scholar 

  69. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001).

  70. Shan, Y. et al. Stacking symmetry governed second harmonic generation in graphene trilayers. Sci. Adv. 4, eaat0074 (2018).

    Article  ADS  Google Scholar 

  71. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    Article  ADS  Google Scholar 

  72. Min, H. & MacDonald, A. H. Electronic structure of multilayer graphene. Prog. Theor. Phys. Suppl. 176, 227–252 (2008).

    Article  ADS  Google Scholar 

  73. Guinea, F., Castro Neto, A. H. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  74. Koshino, M. & Ando, T. Orbital diamagnetism in multilayer graphenes: systematic study with the effective mass approximation. Phys. Rev. B 76, 085425 (2007).

    Article  ADS  Google Scholar 

  75. Mak, K. F., Sfeir, M. Y., Misewich, J. A. & Heinz, T. F. The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 107, 14999–15004 (2010).

    Article  ADS  Google Scholar 

  76. Wirth, K. G. et al. Experimental observation of ABCB stacked tetralayer graphene. ACS Nano 16, 16617–16623 (2022).

    Article  Google Scholar 

  77. McEllistrim, A., Garcia-Ruiz, A., Goodwin, Z. A. H. & Fal’ko, V. I. Spectroscopic signatures of tetralayer graphene polytypes. Phys. Rev. B 107, 155147 (2023).

    Article  ADS  Google Scholar 

  78. Beitner, D. et al. Mid-infrared mapping of four-layer graphene polytypes using near-field microscopy. Nano Lett. 23, 10758–10764 (2023).

    Article  ADS  Google Scholar 

  79. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  80. Garcia-Ruiz, A., Enaldiev, V., McEllistrim, A. & Fal’ko, V. I. Mixed-stacking few-layer graphene as an elemental weak ferroelectric material. Nano Lett. 23, 4120–4125 (2023).

    Article  ADS  Google Scholar 

  81. Yang, L., Ding, S., Gao, J. & Wu, M. Atypical sliding and moiré ferroelectricity in pure multilayer graphene. Phys. Rev. Lett. 131, 096801 (2023).

    Article  ADS  Google Scholar 

  82. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

  83. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  84. Michel, K. H. & Verberck, B. Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. Phys. Rev. B 80, 224301 (2009).

    Article  ADS  Google Scholar 

  85. Dong, L., Lou, J. & Shenoy, V. B. Large in-plane and vertical piezoelectricity in janus transition metal dichalchogenides. ACS Nano 11, 8242–8248 (2017).

    Article  Google Scholar 

  86. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    Article  ADS  Google Scholar 

  87. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  88. Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 87, 161403 (2013).

    Article  ADS  Google Scholar 

  89. Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013).

    Article  ADS  Google Scholar 

  90. Dong, Y. et al. Giant bulk piezophotovoltaic effect in 3R-MoS2. Nat. Nanotechnol. 18, 36–41 (2023).

    Article  ADS  Google Scholar 

  91. Zhou, B. T., Pathak, V. & Franz, M. Quantum-geometric origin of out-of-plane stacking ferroelectricity. Phys. Rev. Lett. 132, 196801 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  92. Cao, W. et al. Polarization saturation in multilayered interfacial ferroelectrics. Adv. Mater. 36 (2024).

  93. Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    Article  ADS  Google Scholar 

  94. Yang, D. et al. Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2. Nat. Photon. 16, 469–474 (2022).

    Article  ADS  Google Scholar 

  95. Deb, S. et al. Excitonic signatures of ferroelectric order in parallel-stacked MoS2. Nat. Commun. 15, 7595 (2024).

    Article  Google Scholar 

  96. Boix-Constant, C. et al. Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers. Nat. Mater. 23, 212–218 (2024).

    Article  ADS  Google Scholar 

  97. Zhou, W. et al. Layer-polarized ferromagnetism in rhombohedral multilayer graphene. Nat. Commun. 15, 2597 (2024).

    Article  ADS  Google Scholar 

  98. Jindal, A. et al. Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2. Nature 613, 48–52 (2023).

    Article  ADS  Google Scholar 

  99. Slizovskiy, S., McCann, E., Koshino, M. & Fal’ko, V. I. Films of rhombohedral graphite as two-dimensional topological semimetals. Commun. Phys. 2, 164 (2019).

    Article  Google Scholar 

  100. Garcia‐Ruiz, A., Slizovskiy, S. & Fal’ko, V. I. Flat bands for electrons in rhombohedral graphene multilayers with a twin boundary. Adv. Mater. Interfaces https://doi.org/10.1002/admi.202202221 (2023).

  101. Fischer, A. et al. Spin and charge fluctuation induced pairing in ABCB tetralayer graphene. Phys. Rev. Res. 6, L012003 (2024).

    Article  Google Scholar 

  102. Yang, Y. et al. Stacking order in graphite films controlled by van der Waals technology. Nano Lett. 19, 8526–8532 (2019).

    Article  ADS  Google Scholar 

  103. Liang, J. et al. Shear strain-induced two-dimensional slip avalanches in rhombohedral MoS2. Nano Lett. 23, 7228–7235 (2023).

    Article  ADS  Google Scholar 

  104. Solomon Lipson, H., Stokes, A. R. & Bragg, W. L. The structure of graphite. Proc. R. Soc. Lond. A Math. Phys. Sci. 181, 101–105 (1942).

    ADS  Google Scholar 

  105. Li, H. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020). Study showing direct control of the stacking order in few-layered graphene by doping and electric fields.

    Article  ADS  Google Scholar 

  106. Paul Nery, J., Calandra, M. & Mauri, F. Ab-initio energetics of graphite and multilayer graphene: stability of Bernal versus rhombohedral stacking. 2D Mater. 8, 035006 (2021).

    Article  Google Scholar 

  107. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  108. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

    Article  Google Scholar 

  109. Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    Article  ADS  Google Scholar 

  110. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013). Measurements of properties of dislocation lines.

    Article  ADS  Google Scholar 

  111. Kushima, A., Qian, X., Zhao, P., Zhang, S. & Li, J. Ripplocations in van der Waals layers. Nano Lett. 15, 1302–1308 (2015).

    Article  ADS  Google Scholar 

  112. Lebedeva, I. V., Lebedev, A. V., Popov, A. M. & Knizhnik, A. A. Dislocations in stacking and commensurate–incommensurate phase transition in bilayer graphene and hexagonal boron nitride. Phys. Rev. B 93, 235414 (2016).

    Article  ADS  Google Scholar 

  113. Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).

    Article  ADS  Google Scholar 

  114. Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable network model for electrically tunable ferroelectric domain structure in twistronic bilayers of two-dimensional semiconductors. Nano Lett. 22, 1534–1540 (2022).

    Article  ADS  Google Scholar 

  115. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020). Demonstrates how the relative area of bilayer transition metal dichalcogenide polytypes is influenced by stacking stability.

    Article  ADS  Google Scholar 

  116. Marmolejo-Tejada, J. M., Roll, J. E., Poudel, S. P., Barraza-Lopez, S. & Mosquera, M. A. Slippery paraelectric transition-metal dichalcogenide bilayers. Nano Lett. 22, 7984–7991 (2022).

    Article  ADS  Google Scholar 

  117. Tang, P. & Bauer, G. E. W. Sliding phase transition in ferroelectric van der Waals bilayers. Phys. Rev. Lett. 130, 176801 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  118. Berezinsky, V. L. Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. Sov. Phys. JETP 32, 493–500 (1971).

    ADS  MathSciNet  Google Scholar 

  119. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  120. Gómez-Ortiz, F., García-Fernández, P., López, J. M. & Junquera, J. Berezinskii–Kosterlitz–Thouless phases in ultrathin PbTiO3/SrTiO3 superlattices. Phys. Rev. B 106, 134106 (2022).

    Article  ADS  Google Scholar 

  121. Halbertal, D. et al. Unconventional non-local relaxation dynamics in a twisted trilayer graphene moiré superlattice. Nat. Commun. 13, 7587 (2022).

    Article  ADS  Google Scholar 

  122. Molino, L. et al. Ferroelectric switching at symmetry‐broken interfaces by local control of dislocations networks. Adv. Mater. 35, e2207816 (2023).

    Article  Google Scholar 

  123. Bennett, D. & Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. npj 2D Mater. Appl. 6, 7 (2022).

    Article  Google Scholar 

  124. Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    Article  ADS  Google Scholar 

  125. Qi, J. et al. Stacking‐controlled growth of rBN crystalline films with high nonlinear optical conversion efficiency up to 1%. Adv. Mater. 36, e2303122 (2024).

    Article  Google Scholar 

  126. Wang, L. et al. Bevel-edge epitaxy of ferroelectric rhombohedral boron nitride single crystal. Nature 629, 74–79 (2024).

    Article  ADS  Google Scholar 

  127. Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article  ADS  Google Scholar 

  128. Bennett, D. Theory of polar domains in moiré heterostructures. Phys. Rev. B 105, 235445 (2022).

    Article  ADS  Google Scholar 

  129. Yamada, N. et al. High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 26, 61 (1987).

    Article  Google Scholar 

  130. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article  ADS  Google Scholar 

  131. Hou, W. et al. Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol. 14, 668–673 (2019).

    Article  ADS  Google Scholar 

  132. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  ADS  Google Scholar 

  133. Yasuda, K. et al. Ultrafast high-endurance memory based on sliding ferroelectrics. Science 385, 53–56 (2024).

    Article  Google Scholar 

  134. Bian, R. et al. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385, 57–62 (2024). These two papers show quick and durable switching between stacking orders.

    Article  Google Scholar 

  135. Jiang, L. et al. Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–208 (2018).

    Article  ADS  Google Scholar 

  136. Zhang, S. et al. Domino-like stacking order switching in twisted monolayer–multilayer graphene. Nat. Mater. 21, 621–626 (2022).

    Article  ADS  Google Scholar 

  137. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  138. Behnia, K. Polarized light boosts valleytronics. Nat. Nanotechnol. 7, 488–489 (2012).

    Article  ADS  Google Scholar 

  139. Fox, C., Mao, Y., Zhang, X., Wang, Y. & Xiao, J. Stacking order engineering of two-dimensional materials and device applications. Chem. Rev. https://doi.org/10.1021/acs.chemrev.3c00618 (2023).

  140. Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018).

    Article  ADS  Google Scholar 

  141. Kim, K.-E. et al. Configurable topological textures in strain graded ferroelectric nanoplates. Nat. Commun. 9, 403 (2018).

    Article  ADS  Google Scholar 

  142. Koprivica, D. & Sela, E. Resonant tunneling in graphene–ferroelectric–graphene junctions. Phys. Rev. B 106, 144110 (2022).

    Article  ADS  Google Scholar 

  143. Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019).

    Article  ADS  Google Scholar 

  144. Si, M., Lyu, X. & Ye, P. D. Ferroelectric polarization switching of hafnium zirconium oxide in a ferroelectric/dielectric stack. ACS Appl. Electron. Mater. 1, 745–751 (2019).

    Article  Google Scholar 

  145. Chirila, C. F. et al. Controlling polarization direction in epitaxial Pb(Zr0.2Ti0.8)O3 films through Nb (n-type) and Fe (p-type) doping. Sci. Rep. 12, 755 (2022).

    Article  ADS  Google Scholar 

  146. Gao, P. et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat. Commun. 8, 15549 (2017).

    Article  ADS  Google Scholar 

  147. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  148. Liu, A. et al. The roadmap of 2D materials and devices toward chips. Nanomicro Lett. 16, 119 (2024).

    ADS  Google Scholar 

  149. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article  ADS  Google Scholar 

  150. Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).

    Article  ADS  Google Scholar 

  151. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  ADS  Google Scholar 

  152. Kerelsky, A. et al. Moiréless correlations in ABCA graphene. Proc. Natl Acad. Sci. USA 118, e2017366118 (2021).

    Article  Google Scholar 

  153. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Ravid and I. Malker for their support and Y. Lahini for insightful discussions. The authors acknowledge funding by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 852925) and the Israel Science Foundation under grant nos 319/22 and 3623/21. The authors further acknowledge the Centre for Nanoscience and Nanotechnology of Tel Aviv University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Moshe Ben Shalom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vizner Stern, M., Salleh Atri, S. & Ben Shalom, M. Sliding van der Waals polytypes. Nat Rev Phys 7, 50–61 (2025). https://doi.org/10.1038/s42254-024-00781-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00781-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing