Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal functional connectivity after whiplash injury is linked to the development of chronic pain

Subjects

Abstract

Brain-centric theories propose that chronic pain is driven and maintained by maladaptive negative emotional learning, with the hippocampus playing a crucial role in the transition from acute to chronic pain. However, little is known about what triggers this maladaptive learning in the first place, especially in the early acute stages following injury. We imaged 110 patients within days of whiplash and mild traumatic brain injury and tested whether hippocampal adaptations impart risk for chronic pain one year later. Patients who went on to develop chronic pain one year later showed increased connectivity between the hippocampus and its posterior network, as well as increased network connectivity across posterior hippocampal network nodes and the amygdala bilaterally. This connectivity was linked to anxiety and increased with time lapse from injury to brain scans. Our findings link rapid hippocampal network reorganization with the development of chronic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hippocampal functional connectivity within days after injury was associated with pain chronicity 1 year later.
Fig. 2: Hippocampal functional connectivity increased with the time lag from the accident to the brain scan and with anxiety for participants who develop chronic pain.
Fig. 3: NBS also showed upregulated connectivity for the amygdala and several posterior hippocampal network regions in patients who developed chronic pain.

Similar content being viewed by others

Data availability

After finishing our planned data analyses, the full imaging data will be provided at our data repository, http://www.openpain.org. Until then, data will be shared on reasonable request.

References

  1. Baliki, M. N. & Apkarian, A. V. Nociception, pain, negative moods and behavior selection. Neuron 87, 474–491 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leeuw, M. et al. The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. J. Behav. Med. 30, 77–94 (2007).

    Article  PubMed  Google Scholar 

  3. Vachon-Presseau, E. et al. The emotional brain as a predictor and amplifier of chronic pain. J. Dent. Res. 95, 605–612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Plachti, A. et al. Multimodal parcellations and extensive behavioral profiling tackling the hippocampus gradient. Cereb. Cortex 29, 4595–4612 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wimmer, G. E. & Büchel, C. Reactivation of single-episode pain patterns in the hippocampus and decision making. J. Neurosci. 41, 7894–7908 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vachon-Presseau, E. et al. The stress model of chronic pain: evidence from basal cortisol and hippocampal structure and function in humans. Brain 136, 815–827 (2013).

    Article  PubMed  Google Scholar 

  7. Apkarian, A. V. et al. Role of adult hippocampal neurogenesis in persistent pain. Pain 157, 418–428 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wei, X. et al. Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents. Pain 162, 2865 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berger, S. E. et al. Hippocampal morphology mediates biased memories of chronic pain. Neuroimage 166, 86–98 (2018).

    Article  PubMed  Google Scholar 

  10. Vachon-Presseau, E. et al. Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain 139, 1958–1970 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reckziegel, D. et al. Sex-specific pharmacotherapy for back pain: a proof-of-concept randomized trial. Pain Ther. 10, 1375–1400 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mutso, A. A. et al. Reorganization of hippocampal functional connectivity with transition to chronic back pain. J. Neurophysiol. 111, 1065–1076 (2014).

    Article  PubMed  Google Scholar 

  13. Brodt, S. et al. Fast track to the neocortex: a memory engram in the posterior parietal cortex. Science 362, 1045–1048 (2018).

    Article  PubMed  Google Scholar 

  14. Lucas, S., Hoffman, J. M., Bell, K. R. & Dikmen, S. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia 34, 93–102 (2014).

    Article  PubMed  Google Scholar 

  15. Dai, W. et al. Prevalence of acute stress disorder among road traffic accident survivors: a meta-analysis. BMC Psychiatry 18, 188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim, E. J., Pellman, B. & Kim, J. J. Stress effects on the hippocampus: a critical review. Learn. Mem. 22, 411–416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).

    Article  PubMed  Google Scholar 

  18. Himmer, L., Schönauer, M., Heib, D. P. J., Schabus, M. & Gais, S. Rehearsal initiates systems memory consolidation, sleep makes it last. Sci. Adv. 5, eaav1695 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117–137 (2015).

    Article  PubMed  Google Scholar 

  20. Mirescu, C. & Gould, E. Stress and adult neurogenesis. Hippocampus 16, 233–238 (2006).

    Article  PubMed  Google Scholar 

  21. Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207 (2010).

    Article  PubMed  Google Scholar 

  22. Vlaeyen, J. W. S. & Linton, S. J. Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. Pain 85, 317–332 (2000).

    Article  PubMed  Google Scholar 

  23. Hashmi, J. A. et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751–2768 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reckziegel, D. et al. Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 162, 1457–1467 (2021).

    Article  PubMed  Google Scholar 

  25. Wang, J. X. et al. Targeted enhancement of cortical–hippocampal brain networks and associative memory. Science 345, 1054–1057 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gilmore, A. W., Nelson, S. M. & McDermott, K. B. A parietal memory network revealed by multiple MRI methods. Trends Cogn. Sci. 19, 534–543 (2015).

    Article  PubMed  Google Scholar 

  27. Ranganath, C., Heller, A., Cohen, M. X., Brozinsky, C. J. & Rissman, J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 15, 997–1005 (2005).

    Article  PubMed  Google Scholar 

  28. Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    Article  PubMed  Google Scholar 

  29. Costa, M. et al. Aversive memory formation in humans involves an amygdala–hippocampus phase code. Nat. Commun. 13, 6403 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, H. et al. Awake ripples enhance emotional memory encoding in the human brain. Nat. Commun. 15, 215 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gould, E. & Tanapat, P. Stress and hippocampal neurogenesis. Biol. Psychiatry 46, 1472–1479 (1999).

    Article  PubMed  Google Scholar 

  32. Girgis, F., Pace, J., Sweet, J. & Miller, J. P. Hippocampal neurophysiologic changes after mild traumatic brain injury and potential neuromodulation treatment approaches. Front. Syst. Neurosci. 10, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Henckens, M. J. A. G., Hermans, E. J., Pu, Z., Joëls, M. & Fernández, G. Stressed memories: how acute stress affects memory formation in humans. J. Neurosci. 29, 10111–10119 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou, Y. et al. Early altered resting-state functional connectivity predicts the severity of post-traumatic stress disorder symptoms in acutely traumatized subjects. PLoS ONE 7, e46833 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fitzgerald, J. M. et al. Hippocampal resting-state functional connectivity forecasts individual posttraumatic stress disorder symptoms: a data-driven approach. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 139–149 (2022).

    PubMed  Google Scholar 

  36. Hruschak, V. & Cochran, G. Psychosocial predictors in the transition from acute to chronic pain: a systematic review. Psychol. Health Med. 23, 1151–1167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ashar, Y. K. et al. Effect of pain reprocessing therapy vs placebo and usual care for patients with chronic back pain: a randomized clinical trial. JAMA Psychiatry 79, 13–23 (2022).

    Article  PubMed  Google Scholar 

  38. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    Article  PubMed  Google Scholar 

  39. Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17, 230–240 (2013).

    Article  PubMed  Google Scholar 

  40. Cooper, R. A. & Ritchey, M. Cortico-hippocampal network connections support the multidimensional quality of episodic memory. eLife 8, e45591 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ranganath, C. & Ritchey, M. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13, 713–726 (2012).

    Article  PubMed  Google Scholar 

  42. Ezama, L., Hernández‐Cabrera, J. A., Seoane, S., Pereda, E. & Janssen, N. Functional connectivity of the hippocampus and its subfields in resting‐state networks. Eur. J. Neurosci. 53, 3378–3393 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Niu, X. et al. Disruption of periaqueductal grey-default mode network functional connectivity predicts persistent post-traumatic headache in mild traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 90, 326–332 (2019).

    Article  PubMed  Google Scholar 

  44. Seymour, B., Crook, R. J. & Chen, Z. S. Post-injury pain and behaviour: a control theory perspective. Nat. Rev. Neurosci. 24, 378–392 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bosak, N. et al. Brain connectivity predicts chronic pain in acute mild traumatic brain injury. Ann. Neurol. 92, 819–833 (2022).

  46. Price, T. J. et al. Transition to chronic pain: opportunities for novel therapeutics. Nat. Rev. Neurosci. 19, 383–384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuperman, P. et al. Psychophysic–psychological dichotomy in very early acute mTBI pain: a prospective study. Neurology 91, e931–e938 (2018).

    Article  PubMed  Google Scholar 

  48. Branco, P. et al. Structural brain connectivity predicts early acute pain after mild traumatic brain injury. Pain 164, 1312–1320 (2023).

    Article  PubMed  Google Scholar 

  49. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  PubMed  Google Scholar 

  50. Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    Article  PubMed  Google Scholar 

  52. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).

    Article  PubMed  Google Scholar 

  53. Sämann, P. G. et al. FreeSurfer‐based segmentation of hippocampal subfields: a review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts. Hum. Brain Mapp. 43, 207–233 (2022).

    Article  PubMed  Google Scholar 

  54. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Article  PubMed  Google Scholar 

  55. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Winkler, A. M. et al. Non‐parametric combination and related permutation tests for neuroimaging. Hum. Brain Mapp. 37, 1486–1511 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA 107, 4734–4739 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abel, T., Havekes, R., Saletin, J. M. & Walker, M. P. Sleep, plasticity and memory from molecules to whole-brain networks. Curr. Biol. 23, R774–R788 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all members of the Apkarian lab for their feedback on the manuscript. This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs under award W81XWH-15-1-0603 to D.Y. and A.V.A. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense. This work was further supported by National Institutes of Health grant P50 DA044121 and grant R01AR074274, both to A.V.A.

Author information

Authors and Affiliations

Authors

Contributions

D.Y., Y.G., and A.V.A. designed the study, coordinated data collection, and obtained funding. N.B. collected data. P.B. performed imaging analyses. P.B. and A.D.V. performed statistical analyses. P.B. drafted the manuscript. P.B., N.B., A.D.V., and A.V.A. further edited and revised the manuscript. All authors discussed the results, contributed to, and approved the final manuscript.

Corresponding author

Correspondence to A. Vania Apkarian.

Ethics declarations

Competing interests

The authors declare competing interests.

Peer review

Peer review information

Nature Mental Health thanks Jacklynn Fitzgerald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–8, and Methods.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branco, P., Bosak, N., Vigotsky, A.D. et al. Hippocampal functional connectivity after whiplash injury is linked to the development of chronic pain. Nat. Mental Health 2, 1362–1370 (2024). https://doi.org/10.1038/s44220-024-00329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00329-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing